Math 115
Winter 2017
Lecture 2

Simplify:

$$
\begin{aligned}
& \text { (1) }(2-1)^{5} \cdot\left\{-4\left(2-3^{2}\right)-2^{5}\right\} \\
& =(1)^{5} \cdot\{-4(2-9)-32\}=1 \cdot\{-4(-7)-32\} \\
& \text { (2) } 4\left(2 x^{-1}-1\right)+2(-4 x+2) \quad 28-32=-4 \\
& =8 x-4 x+(-8 x)+4 x=0+0=0 \quad \begin{array}{l}
\text { use } \phi \\
\text { for zero. }
\end{array}
\end{aligned}
$$

Evaluate
(1) $-5 x^{2}+10 x-4$ for $x=-2$.

$$
\begin{aligned}
=-5(-2)^{2}+10(-2)-4 & =-5(4)+10(-2)-4 \\
& =-20+(-20)+(-4)=-44
\end{aligned}
$$

(2) $\frac{\sqrt{|x|}-y}{x^{2}-y^{2}}$
for $x=-9 \quad$ \& $y=3$.
Do not use ϕ for y

$$
=\frac{\sqrt{(-9)}-3}{(-9)^{2}-3^{2}}=\frac{\sqrt{9}-3}{81-9}=\frac{3-3}{72}=\frac{0}{72}=0
$$

Simplify $\dot{\varepsilon}$, Name the property:

$$
\begin{aligned}
& \frac{1}{2}(2 x-1)+\frac{1}{2} \\
= & \left.\frac{1}{2} \cdot(2 x)-\frac{1}{2} \cdot 1+\frac{1}{2}\right)^{0} \text { Distributive Prop. } \\
= & \left(\frac{1}{2} \cdot 2\right) x-\frac{1}{2} \cdot 1+\frac{1}{2} \\
\text { Inverse } & \text { identity } \\
= & 1 \cdot x-\frac{1}{2}+\frac{x}{2}=x+0=x \\
& \text { Indent. Inverse } \quad \text { Identitive Prop. }
\end{aligned}
$$

Translate:
(1) 3 times some number increased by -10 .

$$
3 \cdot x+(-10)=3 x-10
$$

(2) Square of Some number decreased by -8 .

$$
x^{2}-(-8)=x^{2}+8
$$

(3) Some number times the Sum of -5 and the number. $\quad x \cdot(-5+x)$
(4) the quotient of Some number and the number increased by 5.

$$
\frac{x}{x+5}
$$

(5) The difference of twice Some number and (3), raised to second power.

$$
(2 x-3)^{20}
$$

Simplify:
1)

$$
\begin{aligned}
& \frac{3}{5} \Theta \frac{\theta^{2}}{3}=\frac{3 \cdot 3}{5 \cdot 3}+\frac{2 \cdot 5}{3 \cdot 5}=\frac{9}{15}+\frac{10}{15} \\
& =\frac{19}{15}=1 \frac{4}{15}
\end{aligned}
$$

2)

$$
\begin{aligned}
& \frac{3 x-8}{10}+\frac{2 x+8}{10} \\
& =\frac{3 x-8+2 x+8}{10}=\frac{5 x}{10} \\
& =\frac{5 \cdot x}{5 \cdot 2}=\frac{x}{2}
\end{aligned}
$$

3)

$$
\begin{aligned}
& -3 \frac{1}{3} \cdot 2 \frac{2}{5} \\
= & -\frac{2}{3} \cdot \frac{x^{4}}{5}=-2 \cdot 4=-8
\end{aligned}
$$

4)

$$
\begin{array}{rl}
-\frac{4}{5} \div 10 & 5 \sqrt{\frac{49}{25}} \div\left(-1 \frac{2}{5}\right) \\
=\frac{-4}{5} \div \frac{10}{1}=\frac{-4}{5} \cdot \frac{1}{10}=-\frac{-2}{25}=-.08 & \left.=\frac{7}{5} \div \frac{(-7}{5}\right) \\
& =\frac{7}{5} \cdot \frac{-5}{7} \\
& =-1
\end{array}
$$

Class Quiz \#1
Name First Last
(i) Simplify:

$$
\begin{array}{r}
y:-2(\sqrt{9}-\sqrt{16})-\sqrt{4} \\
=-2(3-4)-2=-2(-1)-2 \\
=2-2=
\end{array}
$$

(2) Simplify: $4(x+3)-2(x+6)$

$$
10-2 x=4 x+x^{2}-2 x-12=2 x
$$

(3) Translate: twice Some number less than 10

The Sum of A and B
The total of A and $B \Rightarrow A+B$
A more than $B \Rightarrow B+A$
A added $t_{0} B \Rightarrow B+A$
The difference of A and $B \Rightarrow A-B$
A minus $B \Rightarrow A-B$
A less than $B \Rightarrow B-A$
A less $B \Rightarrow A-B$
A Subtracted from $B \Rightarrow B-A$
Difference of x^{2} and -10

$$
x^{2}-(-10)=x^{2}+10
$$

4 times some number subtracted from 25 .

$$
25-4 x
$$

Square of Some number less twice the number.

$$
x^{2}-2 x
$$

Difference of $5 x$ and 3 , raised to The Third power, then reduced by x^{2}.

$$
(5 x-3)^{3}-x^{2}
$$

Translate:
3 times Some number increased by 10 is equal to

8 less than the number

$$
3 x+10=x-8
$$

Now we have an equation

When two expressions are equal, we have an equation.

$$
\begin{aligned}
& x^{2}+3 x=x-5, \\
& \sqrt{2 x-3}=x+4, \\
& 4(x-1)+7=2(x+5)-1
\end{aligned} \quad \rightarrow \frac{x-3}{x+5}=\frac{2}{3}
$$

we usually solve an equation, We "simplify an expression.

Solution to an equation is a numerical Value that makes both sides of equation equal to each other.
Solution makes the equation a true Statement.

Linear Equation

$$
A x+B=C
$$

x is the variable, $A, B, C \rightarrow$ numbers.

$$
3 x-5=-17
$$

Linear equations have exactly one
Solution, in finitely many Solutions, or no Solution at all.

Solve linear equation:
our goal is to isolate the variable on the left-hand side of the equal sign.
Some Properties: If $A=B$, then

$$
\begin{aligned}
A+C & =B+C, \quad A-C=B-C \\
A \cdot C & =B \cdot C, \quad \frac{A}{C}=\frac{B}{C} \quad C \neq 0
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& 2 x-5=7 \text { Check: } \\
& 2 x-5+5=7+5 \\
& 2 x=12 \\
& \frac{2 x}{2}=\frac{12}{2} \begin{array}{c}
2(6)-5=7 \\
12-5=7 \\
x \\
x
\end{array} \quad \sigma \text { Solution, Solution Set }\{6\}
\end{aligned}
$$

Solve غ̀ check:

$$
\left.\begin{array}{c|c|}
-3 x+8=-13 \\
-3 x+8-8=-13-8 & \text { Check: } \\
-3 x=-21 \\
-3(7)+8=-13 \\
-21+8=-13 \\
-21 \\
\text { Solution } \rightarrow x=7
\end{array} \right\rvert\, \begin{array}{r}
-13=-13 \\
\hline
\end{array}
$$

Solve: Hint: Distribute ε : Simplify

$$
\begin{aligned}
& 4(x-2)+3(2 x+5)=7 \\
& \begin{array}{l}
4 x-8+6 x+15=7
\end{array} \quad\left[\frac{10 x}{10}=\frac{0}{10}\right. \\
& 10 x+7=7 \\
& x=0 \\
& 10 x+y-y=x-x \\
& \text { Zero }=\text { Zero } \\
& 10 x=0 \\
& \begin{aligned}
& \text { Nonzero } \\
&\{0\}
\end{aligned}
\end{aligned}
$$

Solve Hint: Distribute घ̀. Simplify

$$
\begin{gathered}
3(2 x+10)-2(3 x+5)=-20 \\
6 x+30-6 x-10=-20 \\
20=-20
\end{gathered}
$$

Do not use $\{\phi\}$

Solve

$$
\begin{gathered}
-4(5 x-8)+5(4 x+3)=47 \\
-20 x+32+20 x+15=47 \\
47=47
\end{gathered}
$$

True
Infinitely many Solutions
All Real numbers, \mathbb{R}

Maria is 5 Years older than Jose. The Sum of their ages is 29. How old are they now?

Maria $\rightarrow x+5$

$+x+5=29$
$2 x+5=29$
$2 x+5-5=29-5$

$$
\begin{array}{r}
2 x=24 \\
\frac{2 x}{2}=\frac{24}{2} \\
x=12
\end{array}
$$

Jose is 12 and Maria is 17 years old.

The perimeter of this room is 34 meters.
the length is 2 meters longer than twice of its width.
The room is rectangular. find its dimensions.

$$
W=x \quad P=34 \mathrm{~m}
$$

Formula

$$
P=2 L+2 W
$$

So

$$
\begin{aligned}
& 2 L+2 w=34 \\
& 2(2 x+2)+2(x)=34 \\
& 4 x+4+2 x=34 \\
& 6 x+4=34
\end{aligned}
$$

$$
\begin{aligned}
6 x+4-4 & =34-4 \\
6 x & =30 \\
\frac{6}{6} x & =\frac{30}{6} \quad\left\{\begin{array} { l }
{ \text { width is } 5 \mathrm { m } , } \\
{ x }
\end{array} \quad \left\{\begin{array}{l}
\text { Length is } 12 \mathrm{~m} .
\end{array}\right.\right.
\end{aligned}
$$

There were 47 Students in a math class. The \# of female students was 1 fewer than 3 times the $\#$ of male students. find how many female Students in that math class. Females $+M_{\text {ales }}=47$ Females $\rightarrow 3 x-1$ Males $\rightarrow x$

$$
\begin{aligned}
3 x-1+x & =47 \\
4 x-1 & =47
\end{aligned}
$$

$$
\begin{gathered}
4 x-1+1=47+1 \\
4 x=48 \\
\frac{4}{4} x=\frac{48}{4} \\
x=12
\end{gathered}
$$

Females $\rightarrow 3 x-1=3(12)-1=35$

Math Lab Tutoring location $\dot{\varepsilon}$ time G5 - lower level G5-009

$$
M \text { - Th. 11:00 An -7:00 pm }
$$

Friday Er Saturday 10:00 AM -4:00 PM
\square
whenever the variable is on both sides, we use equation properties to get all variables on the left-hand side and the rest on the right-hand side.
Solve $3 x-7=x+13$
Soln: $10 \quad 3 x-7+7=x+13+7$
$\begin{array}{rr}\text { Solnset } & 3 x=x+20 \\ \{10\} & \left.3 x-x=x+20-x \quad \begin{array}{rl}2 x=20 \\ & x=10\end{array}\right)\end{array}$

$$
\{10\} \quad \begin{gathered}
3 x=x+20 \\
3 x-x=x+20-x
\end{gathered} \quad x=10
$$

Solve

$$
\left.\begin{array}{rl}
3 x+12 & =-2 x-28 \\
3 x+12-12 & =-2 x-28-12 \\
3 x & =-2 x-40 \\
3 x+2 x & =-2 x-40+2 x \\
5 x & =-40 \\
x & =-\frac{40}{5}
\end{array} \rightarrow \underset{\{-8\}}{x=-8}\right\}
$$

Solve

$$
\begin{aligned}
& 2(x-5)+3=4(x+3)-2 \\
& 2 x-10+3=4 x+12-2 \\
& 2 x(-7)=\left(4 x+10 \rightarrow x=\frac{17}{-2}\right. \\
& \begin{array}{l}
2 x-4 x=10+7 \\
-2 x=17 \frac{x=\frac{-17}{2} x=-8.5}{\left\{\frac{-17}{2}\right\}}
\end{array}
\end{aligned}
$$

Solve

$$
\begin{aligned}
& 3(2 x-1)+8=-2(4-3 x)-8 \\
& 6 x-3+8=-8+6 x-8 \\
& 6 x \xrightarrow[+5]{\rightarrow}=6 x-16 \\
& 6 x-6 x=-16-5 \rightarrow \begin{array}{c}
\text { False }
\end{array} \\
& 0=-21 \\
& \text { dor }\}
\end{aligned}
$$

Solve

$$
\begin{aligned}
& 5(x-1)-3(x+4)=2(x-3)-11 \\
& 5 x-5-3 x-12=2 x-6-11 \\
& 2 x-x=2 x-17 \\
& 2 x-2 x=-17+17 \\
& 0=0 \rightarrow \text { True } \rightarrow \text { infinitely } \\
& \mathbb{R} \quad \begin{array}{l}
\text { Many Solus. } \\
\text { All Reals }
\end{array}
\end{aligned}
$$

Whenever the equation contains fractions, multiply everything on both Sides of the equation by the LCD of all fractions.
ex: Solve $\frac{2}{3} x-\frac{3}{4}=\frac{1}{2} x+\frac{5}{6}$

$$
\begin{aligned}
4^{3} \cdot \frac{2}{3} x-x^{2} \cdot \frac{3}{4} & ={ }^{6} X\left[\cdot \frac{1}{2} x+12\right. \\
8 x-9 & =6 x+10
\end{aligned}
$$

$$
\begin{aligned}
& 8 x-9=6 x+10 \\
& 8 x-6 x=10+9 \\
& 2 x=19 \rightarrow x=\frac{19}{2} \rightarrow\left\{\frac{19}{2}\right\}
\end{aligned}
$$

Solve: $\quad \frac{-3}{4} x+5=\frac{2}{5} x-1 \quad \angle C D=20$

$$
\begin{gathered}
2^{5} \cdot \frac{-3}{4} x+20 \cdot 5=20 \cdot \frac{2}{5} x-20 \cdot 1 \\
-15 x+100=8 x-20
\end{gathered}
$$

$$
\begin{aligned}
& -15 x+100=8 x-20 \\
& -15 x-8 x=-20-100 \\
& -23 x=-120 \\
& x=\frac{-120}{-23} \quad x=\frac{120}{23} \rightarrow\left\{\frac{120}{23}\right\}
\end{aligned}
$$

$\frac{2}{5}$ of Some number reduced by 6 is equal to $\frac{1}{2}$ of the number increased by 5. find the number

$$
\begin{aligned}
& \frac{2}{5} \cdot x-6=\frac{1}{2} \cdot x+5 \quad L C D=10 \\
& \frac{2}{40} \cdot \frac{2}{5} x-10 \cdot 6=10 \cdot \frac{1}{2} x+10 \cdot 5 \\
& 4 x-60=5 x+50
\end{aligned}
$$

$$
\begin{aligned}
4 x & -5 x=60+50 \\
-x & =110 \\
-1 x & =110 \\
x & =\frac{110}{-1} \quad\left\{\begin{array}{l}
\text { the number is } \\
x
\end{array}=-110\right.
\end{aligned}
$$

$$
\begin{aligned}
& .1 x+.05(2 x-3)=2.45 \\
& .1=\frac{1}{10}, \frac{.05}{1}=\frac{5}{100}, 2.45=\frac{245}{100}
\end{aligned}
$$

Multiply everything by 100 , simplify

$$
\begin{gathered}
100(.1 x)+100(.05)(2 x-3)=100(2.45) \\
10 x+5(2 x-3)=245
\end{gathered}
$$

$$
\left.\begin{array}{l}
10 x+5(2 x-3)=245 \\
10 x+10 x-15=245 \\
20 x-15=245 \\
20 x=245+15 \\
20 x=260 \\
x=\frac{260}{20}
\end{array} \rightarrow x=13\right\}
$$

Solve

$$
\begin{aligned}
& .25\left(2 x^{8}-1\right)+.35 x=100 \\
& .25(2 x)-.25(1)+.35 x=100 \\
& .5 x-.25+.35 x=100 \\
& \begin{array}{c}
.85 x-.25=100 \\
.85 x=100+.25
\end{array} \begin{array}{c}
.85 x=100.25 \\
x=\frac{100.25}{.85} \\
x=117.941176 \\
x \approx 117.94
\end{array}
\end{aligned}
$$

John paid \$1.87 to purchase two types of stamps. Some @ $13 \$$ and Some @ $15 \Varangle$ each.
The number of $15 \$$ stamps was 1 more than twice the \# of $13 \$$ Stamps. How many of each? $136+159=1.8$
Total cost $=\$ 1.87 \quad 15 \$ \rightarrow 2 x+1$

$$
13 \Phi \rightarrow x
$$

\(\underbrace{\substack{13 \phi \\

stamp}}_{\)| cost |
| :---: |
| cost |
| for |
| $13 x$ |
| for |
| stamp |$}=\underbrace{15(2 x+1)}_{p}=187 中$

$$
\begin{aligned}
& 13 x+15(2 x+1)=187 \\
& 13 x+30 x+15=187
\end{aligned}
$$

$$
\begin{aligned}
& 43 x+15=187 \\
& 43 x=187-15 \\
& 43 x=172 \\
& x=\frac{172}{43} \\
& x=4
\end{aligned}
$$

$F F \rightarrow 75 \$$ each
$H B \rightarrow \$ 1.25$ each
Mike paid $\rightarrow \$ 8.25$
\# of FF was twice \# of HB.
How many of each?

$$
\begin{array}{cc}
F F \rightarrow 2 x & 125 x+75(2 x)=825 \\
H B \rightarrow x & 125 x+150 x=825 \\
375 x=825
\end{array}
$$

$$
\begin{aligned}
& 275 x=825 \\
& x=\frac{825}{275} \quad x=3 \\
& 3 H B \text { \& FF }
\end{aligned}
$$

